
Searching and Sorting

1 / 103

1. Searching

2. Hashing

3. Sorting

2 / 103

5.2 Searching

3 / 103

We will now turn our attention to some of the most common problems that arise in
computing, those of searching and sorting.

4 / 103

We will now turn our attention to some of the most common problems that arise in
computing, those of searching and sorting.

Searching is the algorithmic process of finding a particular item in a collection of items. A
search typically returns either True or False when queried on whether an item is
present.

4 / 103

We will now turn our attention to some of the most common problems that arise in
computing, those of searching and sorting.

Searching is the algorithmic process of finding a particular item in a collection of items. A
search typically returns either True or False when queried on whether an item is
present.

In Python, there is a very easy way to ask whether an item is in a list of items. We use the
in operator.

4 / 103

In [1]: 15 in [3, 5, 2, 4, 1]

Out[1]: False

5 / 103

In [1]: 15 in [3, 5, 2, 4, 1]

Out[1]: False

In [2]: 3 in [3, 5, 2, 4, 1]

Out[2]: True

5 / 103

In [1]: 15 in [3, 5, 2, 4, 1]

Out[1]: False

In [2]: 3 in [3, 5, 2, 4, 1]

Out[2]: True

Even though this is easy to write, an underlying process must be carried out to answer the
question. It turns out that there are many different ways to search for the item!

5 / 103

5.3 The Sequential Search

6 / 103

When data items are stored in a collection such as a list, we say that they have a linear or
sequential relationship. The relative positions can be access using the index values of the
individual items.

7 / 103

When data items are stored in a collection such as a list, we say that they have a linear or
sequential relationship. The relative positions can be access using the index values of the
individual items.

Since these index values are ordered, it is possible for us to visit them in sequence. This
process gives rise to our first search technique, the sequential search.

7 / 103

When data items are stored in a collection such as a list, we say that they have a linear or
sequential relationship. The relative positions can be access using the index values of the
individual items.

Since these index values are ordered, it is possible for us to visit them in sequence. This
process gives rise to our first search technique, the sequential search.

7 / 103

The following function needs two items – the list and the item we are looking for – and
returns a Boolean value as to whether it is present.

8 / 103

The following function needs two items – the list and the item we are looking for – and
returns a Boolean value as to whether it is present.

In [3]: def sequential_search(a_list, item):
 pos = 0

 while pos < len(a_list):
 if a_list[pos] == item:
 return True
 pos = pos + 1

 return False

test_list = [54, 26, 93, 17, 77, 31, 44, 55, 20, 65]
print(sequential_search(test_list, 44))
print(sequential_search(test_list, 50))

True
False

8 / 103

5.3.1 Analysis of Sequential Search

9 / 103

To analyze searching algorithms, we need to decide on a basic unit of computation. For
searching, it makes sense to count the number of comparisons performed.

10 / 103

To analyze searching algorithms, we need to decide on a basic unit of computation. For
searching, it makes sense to count the number of comparisons performed.

Another assumption is that the probability that the item we are looking for is in any
particular position is exactly the same for each position of the list.

10 / 103

To analyze searching algorithms, we need to decide on a basic unit of computation. For
searching, it makes sense to count the number of comparisons performed.

Another assumption is that the probability that the item we are looking for is in any
particular position is exactly the same for each position of the list.

If the item is not in the list, the only way to know that is to compare it against every item
present. If there are items, then the sequential search requires comparisons to
discover that the item is not there.

n n

10 / 103

There are three different scenarios that can occur if the item is in the list. In the best case
we will find the item in the first place we look, at the beginning of the list. We will need
only one comparison. In the worst case, we will not discover the item until the very last
comparison, the -th comparison.n

11 / 103

There are three different scenarios that can occur if the item is in the list. In the best case
we will find the item in the first place we look, at the beginning of the list. We will need
only one comparison. In the worst case, we will not discover the item until the very last
comparison, the -th comparison.n

On average, we will find the item about half way into the list; that is, we will compare
against items. So the complexity of the sequential search is n

2
O(n)

11 / 103

There are three different scenarios that can occur if the item is in the list. In the best case
we will find the item in the first place we look, at the beginning of the list. We will need
only one comparison. In the worst case, we will not discover the item until the very last
comparison, the -th comparison.n

On average, we will find the item about half way into the list; that is, we will compare
against items. So the complexity of the sequential search is n

2
O(n)

What would happen to the sequential search if the items were ordered in some way?
Would we be able to gain any efficiency in our search technique?

11 / 103

Assume that the list of items was constructed so that the items are in ascending order,
from low to high. If the item we are looking for is present in the list, the chance of it is still
the same as before.

12 / 103

Assume that the list of items was constructed so that the items are in ascending order,
from low to high. If the item we are looking for is present in the list, the chance of it is still
the same as before.

If the item is not present there is a slight advantage!

12 / 103

Assume that the list of items was constructed so that the items are in ascending order,
from low to high. If the item we are looking for is present in the list, the chance of it is still
the same as before.

If the item is not present there is a slight advantage!

12 / 103

Assume that the list of items was constructed so that the items are in ascending order,
from low to high. If the item we are looking for is present in the list, the chance of it is still
the same as before.

If the item is not present there is a slight advantage!

If we are search for 50 no other elements beyond 54 can work. In this case, the algorithm
does not have to continue looking through all of the items to report that the item was not
found. It can stop immediately!

12 / 103

In [4]: def ordered_sequential_search(a_list, item):
 pos = 0

 while pos < len(a_list):
 if a_list[pos] == item:
 return True
 if a_list[pos] > item:
 return False
 pos = pos + 1
 return False

test_list = [17, 20, 26, 31, 44, 54, 55, 65, 77, 93]
print(ordered_sequential_search(test_list, 44))
print(ordered_sequential_search(test_list, 50))

True
False

13 / 103

The original complexity and the complexity of the ordered sequential search is as follows:

14 / 103

The original complexity and the complexity of the ordered sequential search is as follows:

Case Best Case Worst Case Average Case

item is present 1

item is not present

n
n
2

n n n

14 / 103

The original complexity and the complexity of the ordered sequential search is as follows:

Case Best Case Worst Case Average Case

item is present 1

item is not present

n
n
2

n n n

Case Best Case Worst Case Average Case

item is present 1

item is not present 1

n
n
2

n
n
2

14 / 103

The original complexity and the complexity of the ordered sequential search is as follows:

Case Best Case Worst Case Average Case

item is present 1

item is not present

n
n
2

n n n

Case Best Case Worst Case Average Case

item is present 1

item is not present 1

n
n
2

n
n
2

However, this technique is still .O(n)

14 / 103

5.4 The Binary Search

15 / 103

It is possible to take greater advantage of the ordered list if we are clever with our
comparisons. A binary search will start by examining the middle item. If that item is the
one we are searching for, we are done.

16 / 103

It is possible to take greater advantage of the ordered list if we are clever with our
comparisons. A binary search will start by examining the middle item. If that item is the
one we are searching for, we are done.

If it is not the correct item, we can use the ordered nature of the list to eliminate half of
the remaining items!

16 / 103

It is possible to take greater advantage of the ordered list if we are clever with our
comparisons. A binary search will start by examining the middle item. If that item is the
one we are searching for, we are done.

If it is not the correct item, we can use the ordered nature of the list to eliminate half of
the remaining items!

If the item we are searching for is greater than the middle item, we know that the entire
first (left) half of the list as well as the middle item can be eliminated from further
consideration. The item, if it is in the list, must be in the second (right) half.

16 / 103

We can then repeat the process with the left half. Start at the middle item and compare it
against what we are looking for.

17 / 103

We can then repeat the process with the left half. Start at the middle item and compare it
against what we are looking for.

17 / 103

We can then repeat the process with the left half. Start at the middle item and compare it
against what we are looking for.

The figure above shows how this algorithm can quickly find the value 54.

17 / 103

In [5]: def binary_search(a_list, item):
 first = 0
 last = len(a_list) - 1
 while first <= last:
 midpoint = (first + last) // 2
 print(midpoint - first)
 if a_list[midpoint] == item:
 return True
 elif item < a_list[midpoint]:
 last = midpoint - 1
 else:
 first = midpoint + 1
 return False
test_list = [17, 20, 26, 31, 44, 54, 55, 65, 77, 93]
print(binary_search(test_list, 44))
print(binary_search(test_list, 50))

4
True
4
2
0
False

18 / 103

In [5]: def binary_search(a_list, item):
 first = 0
 last = len(a_list) - 1
 while first <= last:
 midpoint = (first + last) // 2
 print(midpoint - first)
 if a_list[midpoint] == item:
 return True
 elif item < a_list[midpoint]:
 last = midpoint - 1
 else:
 first = midpoint + 1
 return False
test_list = [17, 20, 26, 31, 44, 54, 55, 65, 77, 93]
print(binary_search(test_list, 44))
print(binary_search(test_list, 50))

4
True
4
2
0
False

This algorithm is a great example of a divide and conquer strategy. This means that we
divide the problem into smaller pieces, solve the smaller pieces in some way, and then
reassemble the whole problem to get the result.

18 / 103

This is a recursive call to the binary search function passing a smaller list.

19 / 103

This is a recursive call to the binary search function passing a smaller list.

In [6]: def binary_search_rec(a_list, item):
 if len(a_list) == 0:
 return False
 midpoint = (len(a_list) -1)// 2
 print(midpoint)
 if a_list[midpoint] == item:
 return True
 elif item < a_list[midpoint]:
 return binary_search_rec(a_list[:midpoint], item)
 else:
 return binary_search_rec(a_list[midpoint + 1 :], item)

test_list = [17, 20, 26, 31, 44, 54, 55, 65, 77, 93]
print(binary_search_rec(test_list, 44))
print(binary_search_rec(test_list, 50))

4
True
4
2
0
False

19 / 103

5.4.1. Analysis of Binary Search

20 / 103

What is the maximum number of comparisons this algorithm will require to check the
entire list? If we start with items, about items will be left after the first comparison.
After the second comparison, there will be about . Then , and so on. How many times
can we split the list?

n n
2

n
4

n
8

21 / 103

What is the maximum number of comparisons this algorithm will require to check the
entire list? If we start with items, about items will be left after the first comparison.
After the second comparison, there will be about . Then , and so on. How many times
can we split the list?

n n
2

n
4

n
8

Comparisons Approximate Number of Items Left

1

2

3

...

n
2

n
4

n
8

i
n

2i

21 / 103

What is the maximum number of comparisons this algorithm will require to check the
entire list? If we start with items, about items will be left after the first comparison.
After the second comparison, there will be about . Then , and so on. How many times
can we split the list?

n n
2

n
4

n
8

Comparisons Approximate Number of Items Left

1

2

3

...

n
2

n
4

n
8

i
n

2i

When we split the list enough times, we end up with a list that has just one item. Either
that is the item we are looking for or it is not. The number of comparisons necessary to
get to this point is where .i = 1n

2i

21 / 103

Solving for gives us . The maximum number of comparisons is logarithmic with
respect to the number of items in the list. Therefore, the binary search is

i i = logn
O(logn)

22 / 103

Solving for gives us . The maximum number of comparisons is logarithmic with
respect to the number of items in the list. Therefore, the binary search is

i i = logn
O(logn)

Even though a binary search is generally better than a sequential search, it is important to
note that for small values of , the additional cost of sorting is probably not worth it.n

22 / 103

Solving for gives us . The maximum number of comparisons is logarithmic with
respect to the number of items in the list. Therefore, the binary search is

i i = logn
O(logn)

Even though a binary search is generally better than a sequential search, it is important to
note that for small values of , the additional cost of sorting is probably not worth it.n

If we can sort once and then search many times, the cost of the sort is not so significant.
However, for large lists, sorting even once can be so expensive that simply performing a
sequential search from the start may be the best choice.

22 / 103

Exercise 1: Implement the binary search using recursion without the slice operator. Recall that you will
need to pass the list along with the starting and ending index values for the sublist.

23 / 103

Exercise 1: Implement the binary search using recursion without the slice operator. Recall that you will
need to pass the list along with the starting and ending index values for the sublist.

In [7]: def binary_search_rec2(a_list, item, start, last):
 if len(a_list) == 0:
 return False
 midpoint = (len(a_list) -1)// 2
 print(midpoint)
 if a_list[midpoint] == item:
 return True
 elif item < a_list[midpoint]:
 return binary_search_rec2(a_list[:midpoint], item)
 else:
 return binary_search_rec2(a_list[midpoint + 1 :], item)

23 / 103

Exercise 1: Implement the binary search using recursion without the slice operator. Recall that you will
need to pass the list along with the starting and ending index values for the sublist.

In [7]: def binary_search_rec2(a_list, item, start, last):
 if len(a_list) == 0:
 return False
 midpoint = (len(a_list) -1)// 2
 print(midpoint)
 if a_list[midpoint] == item:
 return True
 elif item < a_list[midpoint]:
 return binary_search_rec2(a_list[:midpoint], item)
 else:
 return binary_search_rec2(a_list[midpoint + 1 :], item)

In []: test_list = [17, 20, 26, 31, 44, 54, 55, 65, 77, 93]
print(binary_search_rec2(test_list, 44, 0, len(test_list) - 1))
print(binary_search_rec2(test_list, 50, 0, len(test_list) - 1))

23 / 103

5.5 Hashing

24 / 103

In previous sections we were able to make improvements in our search algorithms by
taking advantage of information about where items are stored in the collection with
respect to one another. For example, by knowing that a list was ordered, we could search
in logarithmic time using a binary search.

25 / 103

In previous sections we were able to make improvements in our search algorithms by
taking advantage of information about where items are stored in the collection with
respect to one another. For example, by knowing that a list was ordered, we could search
in logarithmic time using a binary search.

In this section we will attempt to go one step further by building a data structure that can
be searched in time. This concept is referred to as hashing.O(1)

25 / 103

In previous sections we were able to make improvements in our search algorithms by
taking advantage of information about where items are stored in the collection with
respect to one another. For example, by knowing that a list was ordered, we could search
in logarithmic time using a binary search.

In this section we will attempt to go one step further by building a data structure that can
be searched in time. This concept is referred to as hashing.O(1)

A hash table is a collection of items which are stored in such a way as to make it easy to
find them later. Each position of the hash table, often called a slot, can hold an item and
is named by an integer value starting at 0.

25 / 103

For example, we will have a slot named 0, a slot named 1, a slot named 2, and so on.
Initially, the hash table contains no items so every slot is empty. We can implement a hash
table by using a list with each element initialized to None . Assume the size of the table is

.m

26 / 103

For example, we will have a slot named 0, a slot named 1, a slot named 2, and so on.
Initially, the hash table contains no items so every slot is empty. We can implement a hash
table by using a list with each element initialized to None . Assume the size of the table is

.m

26 / 103

For example, we will have a slot named 0, a slot named 1, a slot named 2, and so on.
Initially, the hash table contains no items so every slot is empty. We can implement a hash
table by using a list with each element initialized to None . Assume the size of the table is

.m

The mapping between an item and the slot where that item belongs in the hash table is
called the hash function. The hash function will take any item in the collection and return
an integer in the range of slot names between 0 and .m − 1

26 / 103

Assume that we have the set of integer items 54, 26, 93, 17, 77, and 31. Our first hash
function, sometimes referred to as the remainder method, simply takes an item and
divides it by the table size, returning the remainder as its hash value
h(item) = item%11

27 / 103

Assume that we have the set of integer items 54, 26, 93, 17, 77, and 31. Our first hash
function, sometimes referred to as the remainder method, simply takes an item and
divides it by the table size, returning the remainder as its hash value
h(item) = item%11

Item Hash value

54 10

26 4

93 5

17 6

77 0

31 9

27 / 103

Assume that we have the set of integer items 54, 26, 93, 17, 77, and 31. Our first hash
function, sometimes referred to as the remainder method, simply takes an item and
divides it by the table size, returning the remainder as its hash value
h(item) = item%11

Item Hash value

54 10

26 4

93 5

17 6

77 0

31 9

Once the hash values have been computed, we can insert each item into the hash table at
the designated position.

27 / 103

Note that 6 of the 11 slots are now occupied. This is referred to as the load factor, and is
commonly denoted by λ = =

number of items

table size
6
11

28 / 103

Note that 6 of the 11 slots are now occupied. This is referred to as the load factor, and is
commonly denoted by λ = =

number of items

table size
6
11

28 / 103

Note that 6 of the 11 slots are now occupied. This is referred to as the load factor, and is
commonly denoted by λ = =

number of items

table size
6
11

Now when we want to search for an item, we simply use the hash function to compute the
slot name for the item and then check the hash table to see if it is present. This searching
operation is !O(1)

28 / 103

You can probably already see that this technique is going to work only if each item maps
to a unique location in the hash table.

29 / 103

You can probably already see that this technique is going to work only if each item maps
to a unique location in the hash table.

For example, if the item 44 had been the next item in our collection, it would have a hash
value of 0 (). Since 77 also had a hash value of 0, we would have a problem!44%11 = 0

29 / 103

You can probably already see that this technique is going to work only if each item maps
to a unique location in the hash table.

For example, if the item 44 had been the next item in our collection, it would have a hash
value of 0 (). Since 77 also had a hash value of 0, we would have a problem!44%11 = 0

According to the hash function, two or more items would need to be in the same slot.
This is referred to as a collision (it may also be called a clash). Clearly, collisions create a
problem for the hashing technique.

29 / 103

5.5.1. Hash Functions

30 / 103

Given a collection of items, a hash function that maps each item into a unique slot is
referred to as a perfect hash function. Unfortunately, given an arbitrary collection of items,
there is no systematic way to construct a perfect hash function. Luckily, we do not need
the hash function to be perfect to still gain performance efficiency!

31 / 103

Given a collection of items, a hash function that maps each item into a unique slot is
referred to as a perfect hash function. Unfortunately, given an arbitrary collection of items,
there is no systematic way to construct a perfect hash function. Luckily, we do not need
the hash function to be perfect to still gain performance efficiency!

Our goal is to create a hash function that minimizes the number of collisions, is easy to
compute, and evenly distributes the items in the hash table.

31 / 103

Given a collection of items, a hash function that maps each item into a unique slot is
referred to as a perfect hash function. Unfortunately, given an arbitrary collection of items,
there is no systematic way to construct a perfect hash function. Luckily, we do not need
the hash function to be perfect to still gain performance efficiency!

Our goal is to create a hash function that minimizes the number of collisions, is easy to
compute, and evenly distributes the items in the hash table.

Note that this remainder method (modulo) will typically be present in some form in all
hash functions since the result must be in the range of slot names.

31 / 103

The folding method for constructing hash functions begins by dividing the item into
equal-sized pieces (the last piece may not be of equal size). These pieces are then added
together to give the resulting hash value.

32 / 103

The folding method for constructing hash functions begins by dividing the item into
equal-sized pieces (the last piece may not be of equal size). These pieces are then added
together to give the resulting hash value.

For example, if our item was the phone number 436-555-4601 , we would take the digits
and divide them into groups of 2 (43, 65, 55, 46, 01). After the addition,

, we get . If we assume our hash table has 11 slots, then we
need to perform the extra step of dividing by 11 and keeping the remainder.
43 + 65 + 55 + 46 + 01 210

32 / 103

The folding method for constructing hash functions begins by dividing the item into
equal-sized pieces (the last piece may not be of equal size). These pieces are then added
together to give the resulting hash value.

For example, if our item was the phone number 436-555-4601 , we would take the digits
and divide them into groups of 2 (43, 65, 55, 46, 01). After the addition,

, we get . If we assume our hash table has 11 slots, then we
need to perform the extra step of dividing by 11 and keeping the remainder.
43 + 65 + 55 + 46 + 01 210

In this case is 1, so the phone number 436-555-4601 hashes to slot 1. Some
folding methods go one step further and reverse every other piece before the addition.
For the above example, we get which gives

.

210%11

34 + 56 + 55 + 64 + 10 = 219
219%11 = 10

32 / 103

Another numerical technique for constructing a hash function is called the mid-square
method. We first square the item, and then extract some portion of the resulting digits.
For example, if the item were 44, we would first compute . By extracting the
middle two digits, 93, and performing the remainder step, we get 5 .

442 = 1936
(93%11)

33 / 103

Another numerical technique for constructing a hash function is called the mid-square
method. We first square the item, and then extract some portion of the resulting digits.
For example, if the item were 44, we would first compute . By extracting the
middle two digits, 93, and performing the remainder step, we get 5 .

442 = 1936
(93%11)

Item Remainder Mid-Square

54 10 3

26 4 1

93 5 9

17 6 8

77 0 4

31 9 6

33 / 103

In [8]: def hash_functions(items, divisor):
 def remainder_method(item, divisor):
 return item % divisor
 def midsquare_method(item, divisor):
 squared = str(item ** 2)
 # Ensure the squared string has even length for properly extracting mi
 if len(squared) % 2 != 0:
 squared = "0" + squared
 middle = len(squared) // 2
 mid_digits = int(squared[max(0, middle - 1):middle + 1])
 return mid_digits % divisor
 hash_table = [] * divisor
 for item in items:
 hash_entry = {
 "Item": item, "Remainder": remainder_method(item, divisor),
 "Mid-Square": midsquare_method(item, divisor)}
 hash_table.append(hash_entry)
 return hash_table

items = [54, 26, 93, 17, 77, 31]
remainder_divisor = 11
hash_results = hash_functions(items, remainder_divisor)
hash_results

Out[8]: [{'Item': 54, 'Remainder': 10, 'Mid-Square': 3},
 {'Item': 26, 'Remainder': 4, 'Mid-Square': 1},
 {'Item': 93, 'Remainder': 5, 'Mid-Square': 9},
 {'Item': 17, 'Remainder': 6, 'Mid-Square': 6},
 {'Item': 77, 'Remainder': 0, 'Mid-Square': 4},
 {'Item': 31, 'Remainder': 9, 'Mid-Square': 8}] 34 / 103

We can also create hash functions for character-based items such as strings. For example,
the word "cat" can be thought of as a sequence of ordinal values. We can then take these
three ordinal values, add them up, and use the remainder method to get a hash value.

35 / 103

We can also create hash functions for character-based items such as strings. For example,
the word "cat" can be thought of as a sequence of ordinal values. We can then take these
three ordinal values, add them up, and use the remainder method to get a hash value.

35 / 103

We can also create hash functions for character-based items such as strings. For example,
the word "cat" can be thought of as a sequence of ordinal values. We can then take these
three ordinal values, add them up, and use the remainder method to get a hash value.

In [9]: def hash_str(a_string, table_size):
 return sum([ord(c) for c in a_string]) % table_size

print(hash_str("cat", 11))

4

35 / 103

It is interesting to note that when using this hash function, anagrams will always be given
the same hash value. To remedy this, we could use the position of the character as a
weight.

36 / 103

It is interesting to note that when using this hash function, anagrams will always be given
the same hash value. To remedy this, we could use the position of the character as a
weight.

36 / 103

It is interesting to note that when using this hash function, anagrams will always be given
the same hash value. To remedy this, we could use the position of the character as a
weight.

The important thing to remember is that the hash function has to be efficient so that it
does not become the dominant part of the storage and search process. Otherwise, we
could just use the search as before.

36 / 103

5.5.2. Collision Resolution

37 / 103

We now return to the problem of collisions. When two items hash to the same slot, we
must have a systematic method for placing the second item in the hash table. This
process is called collision resolution.

38 / 103

We now return to the problem of collisions. When two items hash to the same slot, we
must have a systematic method for placing the second item in the hash table. This
process is called collision resolution.

A simple way to do this is to start at the original hash value position and then move in a
sequential manner through the slots until we encounter the first slot that is empty. Note
that we may need to go back to the first slot (circularly) to cover the entire hash table.

38 / 103

We now return to the problem of collisions. When two items hash to the same slot, we
must have a systematic method for placing the second item in the hash table. This
process is called collision resolution.

A simple way to do this is to start at the original hash value position and then move in a
sequential manner through the slots until we encounter the first slot that is empty. Note
that we may need to go back to the first slot (circularly) to cover the entire hash table.

This collision resolution process is referred to as open addressing in that it tries to find the
next open slot or address in the hash table. By systematically visiting each slot one at a
time, we are performing an open addressing technique called linear probing.

38 / 103

Consider an extended set of integer items under the simple remainder method hash
function (54, 26, 93, 17, 77, 31, 44, 55, 20). The following is the placement of the original
first six values:

39 / 103

Consider an extended set of integer items under the simple remainder method hash
function (54, 26, 93, 17, 77, 31, 44, 55, 20). The following is the placement of the original
first six values:

Let’s see what happens when we attempt to place the additional three items into the
table. When we attempt to place 44 into slot 0, a collision occurs. Under linear probing,
we look sequentially, slot by slot, until we find an open position. In this case, we find slot
1. We can also do the same thing for the other values:

39 / 103

Consider an extended set of integer items under the simple remainder method hash
function (54, 26, 93, 17, 77, 31, 44, 55, 20). The following is the placement of the original
first six values:

Let’s see what happens when we attempt to place the additional three items into the
table. When we attempt to place 44 into slot 0, a collision occurs. Under linear probing,
we look sequentially, slot by slot, until we find an open position. In this case, we find slot
1. We can also do the same thing for the other values:

39 / 103

Once we have built a hash table using open addressing and linear probing, it is essential
that we utilize the same methods to search for items. If we are looking for 20 the hash
value is 9, and slot 9 is currently holding 31. We cannot simply return False since we
know that there could have been collisions. We are now forced to do a sequential search,
starting at position 10, looking until either we find the item 20 or we find an empty slot!

40 / 103

Once we have built a hash table using open addressing and linear probing, it is essential
that we utilize the same methods to search for items. If we are looking for 20 the hash
value is 9, and slot 9 is currently holding 31. We cannot simply return False since we
know that there could have been collisions. We are now forced to do a sequential search,
starting at position 10, looking until either we find the item 20 or we find an empty slot!

A disadvantage to linear probing is the tendency for clustering; This means that if many
collisions occur at the same hash value, a number of surrounding slots will be filled by the
linear probing resolution.

40 / 103

Once we have built a hash table using open addressing and linear probing, it is essential
that we utilize the same methods to search for items. If we are looking for 20 the hash
value is 9, and slot 9 is currently holding 31. We cannot simply return False since we
know that there could have been collisions. We are now forced to do a sequential search,
starting at position 10, looking until either we find the item 20 or we find an empty slot!

A disadvantage to linear probing is the tendency for clustering; This means that if many
collisions occur at the same hash value, a number of surrounding slots will be filled by the
linear probing resolution.

This will have an impact on other items that are being inserted, as we saw when we tried
to add the item 20 above. A cluster of values hashing to 0 had to be skipped to finally find
an open position.

40 / 103

Once we have built a hash table using open addressing and linear probing, it is essential
that we utilize the same methods to search for items. If we are looking for 20 the hash
value is 9, and slot 9 is currently holding 31. We cannot simply return False since we
know that there could have been collisions. We are now forced to do a sequential search,
starting at position 10, looking until either we find the item 20 or we find an empty slot!

A disadvantage to linear probing is the tendency for clustering; This means that if many
collisions occur at the same hash value, a number of surrounding slots will be filled by the
linear probing resolution.

This will have an impact on other items that are being inserted, as we saw when we tried
to add the item 20 above. A cluster of values hashing to 0 had to be skipped to finally find
an open position.

40 / 103

One way to deal with clustering is to extend the linear probing technique so that instead
of looking sequentially for the next open slot, we skip slots, thereby more evenly
distributing the items that have caused collisions. The following shows the items when
collision resolution is done with what we will call a "plus 3" probe. This means that once a
collision occurs, we will look at every third slot until we find one that is empty.

41 / 103

One way to deal with clustering is to extend the linear probing technique so that instead
of looking sequentially for the next open slot, we skip slots, thereby more evenly
distributing the items that have caused collisions. The following shows the items when
collision resolution is done with what we will call a "plus 3" probe. This means that once a
collision occurs, we will look at every third slot until we find one that is empty.

41 / 103

One way to deal with clustering is to extend the linear probing technique so that instead
of looking sequentially for the next open slot, we skip slots, thereby more evenly
distributing the items that have caused collisions. The following shows the items when
collision resolution is done with what we will call a "plus 3" probe. This means that once a
collision occurs, we will look at every third slot until we find one that is empty.

The general name for this process of looking for another slot after a collision is rehashing.
With simple linear probing, the rehash function is

.new_hash = rehash(old_hash), rehash(pos) = (pos + skip)%size

41 / 103

One way to deal with clustering is to extend the linear probing technique so that instead
of looking sequentially for the next open slot, we skip slots, thereby more evenly
distributing the items that have caused collisions. The following shows the items when
collision resolution is done with what we will call a "plus 3" probe. This means that once a
collision occurs, we will look at every third slot until we find one that is empty.

The general name for this process of looking for another slot after a collision is rehashing.
With simple linear probing, the rehash function is

.new_hash = rehash(old_hash), rehash(pos) = (pos + skip)%size

It is important to note that the size of the skip must be such that all the slots in the table
will eventually be visited. Otherwise, part of the table will be unused. To ensure this, it is
often suggested that the table size be a prime number.

41 / 103

In [10]: def hash_functions_with_linear_probing(items, divisor):
 def remainder_method(item, divisor):
 return item % divisor
 hash_table = [None] * divisor
 for item in items:
 hash_index = remainder_method(item, divisor)
 # Linear probing in case of collision
 while hash_table[hash_index] is not None:
 hash_index = (hash_index + 1) % divisor
 hash_table[hash_index] = item
 hash_list = []
 for idx, item in enumerate(hash_table):
 if item is not None: # Only include non-None items
 hash_list.append({"Item": item, "Hash Value": idx})
 return hash_list

items = [54, 26, 93, 17, 77, 31, 44, 55, 20]
remainder_divisor = 11
hash_results = hash_functions_with_linear_probing(items, remainder_divisor)
hash_results

Out[10]: [{'Item': 77, 'Hash Value': 0},
 {'Item': 44, 'Hash Value': 1},
 {'Item': 55, 'Hash Value': 2},
 {'Item': 20, 'Hash Value': 3},
 {'Item': 26, 'Hash Value': 4},
 {'Item': 93, 'Hash Value': 5},
 {'Item': 17, 'Hash Value': 6},
 {'Item': 31, 'Hash Value': 9},
 {'Item': 54, 'Hash Value': 10}] 42 / 103

A variation of the linear probing idea is called quadratic probing. Instead of using a
constant skip value, we use a rehash function that increments the hash value by 1, 4, 9
and so on.

43 / 103

A variation of the linear probing idea is called quadratic probing. Instead of using a
constant skip value, we use a rehash function that increments the hash value by 1, 4, 9
and so on.

This means that if the first hash value is , the successive values are ,
and so on. In other words, quadratic probing uses a skip consisting of successive perfect
squares.

h h + 1,h + 4,h + 9

43 / 103

A variation of the linear probing idea is called quadratic probing. Instead of using a
constant skip value, we use a rehash function that increments the hash value by 1, 4, 9
and so on.

This means that if the first hash value is , the successive values are ,
and so on. In other words, quadratic probing uses a skip consisting of successive perfect
squares.

h h + 1,h + 4,h + 9

43 / 103

An alternative method for handling the collision problem is to allow each slot to hold a
reference to a collection (or chain) of items. Chaining allows many items to exist at the
same location in the hash table. When collisions happen, the item is still placed in the
proper slot of the hash table. As more and more items hash to the same location, the
difficulty of searching for the item in the collection increases.

44 / 103

An alternative method for handling the collision problem is to allow each slot to hold a
reference to a collection (or chain) of items. Chaining allows many items to exist at the
same location in the hash table. When collisions happen, the item is still placed in the
proper slot of the hash table. As more and more items hash to the same location, the
difficulty of searching for the item in the collection increases.

44 / 103

An alternative method for handling the collision problem is to allow each slot to hold a
reference to a collection (or chain) of items. Chaining allows many items to exist at the
same location in the hash table. When collisions happen, the item is still placed in the
proper slot of the hash table. As more and more items hash to the same location, the
difficulty of searching for the item in the collection increases.

When we want to search for an item, we use the hash function to generate the slot where
it should reside. Since with chaining each slot holds a collection, we use a searching
technique to decide whether the item is present.

44 / 103

Exercise 2: Implement quadratic probing as a rehash technique

45 / 103

Exercise 2: Implement quadratic probing as a rehash technique

In [11]: def hash_functions_with_quadratic_probing(items, divisor):
 def remainder_method(item, divisor):
 return item % divisor
 hash_table = [None] * divisor
 for item in items:
 hash_index = remainder_method(item, divisor)
 # quadratic probing in case of collision
 while hash_table[hash_index] is not None:
 hash_index = (hash_index + 1) % divisor
 hash_table[hash_index] = item
 hash_list = []
 for idx, item in enumerate(hash_table):
 if item is not None: # Only include non-None items
 hash_list.append({"Item": item, "Hash Value": idx})
 return hash_list

45 / 103

In []: items = [54, 26, 93, 17, 77, 31, 44, 55, 20]
remainder_divisor = 11
hash_results = hash_functions_with_quadratic_probing(items, remainder_divisor
hash_results

46 / 103

5.5.3. Implementing the Map Abstract Data Type

47 / 103

One of the most useful Python collections is the dictionary. Recall that a dictionary is a
data type where you can store key-data pairs. The key is used to look up the associated
data value. We often refer to this idea as a map.

48 / 103

One of the most useful Python collections is the dictionary. Recall that a dictionary is a
data type where you can store key-data pairs. The key is used to look up the associated
data value. We often refer to this idea as a map.

The map abstract data type is defined as follows. The structure is an unordered collection
of associations between a key and a data value.

48 / 103

One of the most useful Python collections is the dictionary. Recall that a dictionary is a
data type where you can store key-data pairs. The key is used to look up the associated
data value. We often refer to this idea as a map.

The map abstract data type is defined as follows. The structure is an unordered collection
of associations between a key and a data value.

Map() creates a new empty map.

put(key, val) adds a new key–value pair to the map. If the key is already in the
map, it replaces the old value with the new value.

48 / 103

get(key) takes a key and returns the matching value stored in the map or None
otherwise.

del deletes the key–value pair from the map using a statement of the form del
map[key] .

size() returns the number of key–value pairs stored in the map.

in return True for a statement of the form key in map if the given key is in the
map, False otherwise.

49 / 103

get(key) takes a key and returns the matching value stored in the map or None
otherwise.

del deletes the key–value pair from the map using a statement of the form del
map[key] .

size() returns the number of key–value pairs stored in the map.

in return True for a statement of the form key in map if the given key is in the
map, False otherwise.

One of the great benefits of a dictionary is the fact that given a key, we can look up the
associated data value very quickly. This could be done if we use a hash table as described
above.

49 / 103

We use two lists to create a HashTable class that implements the map abstract data
type. One list, called slots , will hold the key items and a parallel list, called data , will
hold the data values. When we look up a key, the corresponding position in the data list
will hold the associated data value.

50 / 103

We use two lists to create a HashTable class that implements the map abstract data
type. One list, called slots , will hold the key items and a parallel list, called data , will
hold the data values. When we look up a key, the corresponding position in the data list
will hold the associated data value.

In [12]: class HashTable:
 def __init__(self):
 self.size = 11
 self.slots = [None] * self.size
 self.data = [None] * self.size

def hash_function(self, key, size):
 return key % size

def rehash(self, old_hash, size):
 return (old_hash + 1) % size

50 / 103

In [13]: def put(self, key, data):
 hash_value = self.hash_function(key, len(self.slots))

 if self.slots[hash_value] is None:
 self.slots[hash_value] = key
 self.data[hash_value] = data
 else:
 if self.slots[hash_value] == key:
 self.data[hash_value] = data # replace
 else:
 next_slot = self.rehash(hash_value, len(self.slots))
 while (
 self.slots[next_slot] is not None
 and self.slots[next_slot] != key
):
 next_slot = self.rehash(next_slot, len(self.slots))

 if self.slots[next_slot] is None:
 self.slots[next_slot] = key
 self.data[next_slot] = data
 else:
 self.data[next_slot] = data

51 / 103

In [13]: def put(self, key, data):
 hash_value = self.hash_function(key, len(self.slots))

 if self.slots[hash_value] is None:
 self.slots[hash_value] = key
 self.data[hash_value] = data
 else:
 if self.slots[hash_value] == key:
 self.data[hash_value] = data # replace
 else:
 next_slot = self.rehash(hash_value, len(self.slots))
 while (
 self.slots[next_slot] is not None
 and self.slots[next_slot] != key
):
 next_slot = self.rehash(next_slot, len(self.slots))

 if self.slots[next_slot] is None:
 self.slots[next_slot] = key
 self.data[next_slot] = data
 else:
 self.data[next_slot] = data

hash_function() implements the simple remainder method. The collision resolution
technique is linear probing with a "plus 1" rehash value. The put() function assumes
that there will eventually be an empty slot. If a nonempty slot already contains the key,
the old data value is replaced with the new data value.

51 / 103

In [14]: def get(self, key):
 start_slot = self.hash_function(key, len(self.slots))

 position = start_slot
 while self.slots[position] is not None:
 if self.slots[position] == key:
 return self.data[position]
 else:
 position = self.rehash(position, len(self.slots))
 if position == start_slot:
 return None

def __getitem__(self, key):
 return self.get(key)

def __setitem__(self, key, data):
 self.put(key, data)

52 / 103

In [14]: def get(self, key):
 start_slot = self.hash_function(key, len(self.slots))

 position = start_slot
 while self.slots[position] is not None:
 if self.slots[position] == key:
 return self.data[position]
 else:
 position = self.rehash(position, len(self.slots))
 if position == start_slot:
 return None

def __getitem__(self, key):
 return self.get(key)

def __setitem__(self, key, data):
 self.put(key, data)

The get() function begins by computing the initial hash value. If the value is not in the
initial slot, rehash is used to locate the next possible position. Notice that line 10
guarantees that the search will terminate by checking to make sure that we have not
returned to the initial slot. If that happens, we have exhausted all possible slots and the
item must not be present.

52 / 103

The following session shows the HashTable class in action.

53 / 103

The following session shows the HashTable class in action.

In [15]: import sys
sys.path.append("./pythonds3/")

53 / 103

The following session shows the HashTable class in action.

In [15]: import sys
sys.path.append("./pythonds3/")

In [16]: from pythonds3.searching import HashTable

h = HashTable(size=11)
h[54], h[26] = "cat", "dog"
h[93], h[17] = "lion", "tiger"
h[77], h[31] = "bird", "cow"
h[44], h[55] = "goat", "pig"
h[20] = "chicken"
print(h._slots)
print(h._data)

[77, 44, 55, 20, 26, 93, 17, None, None, 31, 54]
['bird', 'goat', 'pig', 'chicken', 'dog', 'lion', 'tiger', None, None,
'cow', 'cat']

53 / 103

Next we will access and modify some items in the hash table. Note that the value for the
key 20 is being replaced.

54 / 103

Next we will access and modify some items in the hash table. Note that the value for the
key 20 is being replaced.

In []: print(h[20])
print(h[17])
h[20] = "duck"
print(h[20])
print(h._data)
print(h[99]) # Not in the table

54 / 103

5.5.4. Analysis of Hashing (Optional)

55 / 103

We stated earlier that in the best case hashing would provide an , constant time
search technique. However, due to collisions, the number of comparisons is typically not
so simple. A complete analysis of hashing is beyond the scope of this text, we state some
well-known results that approximate the number of comparisons necessary to search for
an item.

O(1)

56 / 103

We stated earlier that in the best case hashing would provide an , constant time
search technique. However, due to collisions, the number of comparisons is typically not
so simple. A complete analysis of hashing is beyond the scope of this text, we state some
well-known results that approximate the number of comparisons necessary to search for
an item.

O(1)

The most important piece of information we need to analyze the use of a hash table is the
load factor . Conceptually, if is small, then there is a lower chance of collisions,
meaning that items are more likely to be in the slots where they belong.

λ λ

56 / 103

We stated earlier that in the best case hashing would provide an , constant time
search technique. However, due to collisions, the number of comparisons is typically not
so simple. A complete analysis of hashing is beyond the scope of this text, we state some
well-known results that approximate the number of comparisons necessary to search for
an item.

O(1)

The most important piece of information we need to analyze the use of a hash table is the
load factor . Conceptually, if is small, then there is a lower chance of collisions,
meaning that items are more likely to be in the slots where they belong.

λ λ

If is large, meaning that the table is filling up, then there are more and more collisions.
This means that collision resolution is more difficult, requiring more comparisons to find
an empty slot.

λ

56 / 103

As before, we will have a result for both a successful and an unsuccessful search. For a
successful search using open addressing with linear probing, the average number of
comparisons is approximately and an unsuccessful search gives

.

(1 +)1
2

1
1−λ

(1 + ()
2

)1
2

1
1−λ

57 / 103

As before, we will have a result for both a successful and an unsuccessful search. For a
successful search using open addressing with linear probing, the average number of
comparisons is approximately and an unsuccessful search gives

.

(1 +)1
2

1
1−λ

(1 + ()
2

)1
2

1
1−λ

If we are using chaining, the average number of comparisons is for the successful
case, and simply comparisons if the search is unsuccessful.

1 + λ
2

λ

57 / 103

5.6 Sorting

58 / 103

Sorting is the process of placing elements from a collection in some kind of order. For
example, a list of words could be sorted alphabetically or by length. We have already seen
a number of algorithms that were able to benefit from having a sorted list (recall the final
anagram example and the binary search).

59 / 103

Sorting is the process of placing elements from a collection in some kind of order. For
example, a list of words could be sorted alphabetically or by length. We have already seen
a number of algorithms that were able to benefit from having a sorted list (recall the final
anagram example and the binary search).

Sorting a large number of items can take a substantial amount of computing resources.
Like searching, the efficiency of a sorting algorithm is related to the number of items
being processed.

59 / 103

Sorting is the process of placing elements from a collection in some kind of order. For
example, a list of words could be sorted alphabetically or by length. We have already seen
a number of algorithms that were able to benefit from having a sorted list (recall the final
anagram example and the binary search).

Sorting a large number of items can take a substantial amount of computing resources.
Like searching, the efficiency of a sorting algorithm is related to the number of items
being processed.

For small collections, a complex sorting method may be more trouble than it is worth. The
overhead may be too high. On the other hand, for larger collections, we want to take
advantage of as many improvements as possible.

59 / 103

In this section we will discuss several sorting techniques and compare them with respect
to their running time.

60 / 103

In this section we will discuss several sorting techniques and compare them with respect
to their running time.

We should think about the operations that can be used to analyze a sorting process. First,
it will be necessary to compare two values to see which is smaller (or larger). In order to
sort a collection, it will be necessary to have some systematic way to compare values to
see if they are out of order. The total number of comparisons will be the most common
way to measure a sort procedure.

60 / 103

In this section we will discuss several sorting techniques and compare them with respect
to their running time.

We should think about the operations that can be used to analyze a sorting process. First,
it will be necessary to compare two values to see which is smaller (or larger). In order to
sort a collection, it will be necessary to have some systematic way to compare values to
see if they are out of order. The total number of comparisons will be the most common
way to measure a sort procedure.

Second, when values are not in the correct position with respect to one another, it may be
necessary to exchange them. This exchange is a costly operation and the total number of
exchanges will also be important for evaluating the overall efficiency of the algorithm.

60 / 103

5.7. The Bubble Sort

61 / 103

The bubble sort makes multiple passes through a list. It compares adjacent items and
exchanges those that are out of order. Each pass through the list places the next largest
value in its proper place. In essence, each item bubbles up to the location where it
belongs.

62 / 103

The bubble sort makes multiple passes through a list. It compares adjacent items and
exchanges those that are out of order. Each pass through the list places the next largest
value in its proper place. In essence, each item bubbles up to the location where it
belongs.

62 / 103

If there are items in the list, then there are pairs of items that need to be
compared on the first pass.

n n − 1

63 / 103

If there are items in the list, then there are pairs of items that need to be
compared on the first pass.

n n − 1

At the start of the second pass, the largest value is now in place. There are items
left to sort, meaning that there will be pairs. Since each pass places the next largest
value in place, the total number of passes necessary will be .

n − 1
n − 2

n − 1

63 / 103

If there are items in the list, then there are pairs of items that need to be
compared on the first pass.

n n − 1

At the start of the second pass, the largest value is now in place. There are items
left to sort, meaning that there will be pairs. Since each pass places the next largest
value in place, the total number of passes necessary will be .

n − 1
n − 2

n − 1

The exchange operation, sometimes called a swap, is slightly different in Python than in
most other programming languages. Typically, swapping two elements in a list requires a
temporary variable (an additional memory location).

Without the temporary storage, one of the values would be overwritten.

temp = a_list[i]
a_list[i] = a_list[j]
a_list[j] = temp

63 / 103

In Python , it is possible to perform simultaneous assignment. The statement a, b = b,
a will result in two assignment statements being done at the same time!

64 / 103

In Python , it is possible to perform simultaneous assignment. The statement a, b = b,
a will result in two assignment statements being done at the same time!

In [18]: def bubble_sort(a_list):
 for i in range(len(a_list) - 1, 0, -1):
 for j in range(i):
 if a_list[j] > a_list[j + 1]:
 temp = a_list[j]
 a_list[j] = a_list[j + 1]
 a_list[j + 1] = temp

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
bubble_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

64 / 103

In Python , it is possible to perform simultaneous assignment. The statement a, b = b,
a will result in two assignment statements being done at the same time!

In [18]: def bubble_sort(a_list):
 for i in range(len(a_list) - 1, 0, -1):
 for j in range(i):
 if a_list[j] > a_list[j + 1]:
 temp = a_list[j]
 a_list[j] = a_list[j + 1]
 a_list[j + 1] = temp

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
bubble_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

https://visualgo.net/en/sorting

64 / 103

https://visualgo.net/en/sorting

To analyze the bubble sort, we should note that regardless of how the items are arranged
in the initial list, passes will be made to sort a list of size .n − 1 n

65 / 103

To analyze the bubble sort, we should note that regardless of how the items are arranged
in the initial list, passes will be made to sort a list of size .n − 1 n

Pass Comparisons

1 n-1

2 n-2

3 n-3

... ...

n-1 1

65 / 103

To analyze the bubble sort, we should note that regardless of how the items are arranged
in the initial list, passes will be made to sort a list of size .n − 1 n

Pass Comparisons

1 n-1

2 n-2

3 n-3

... ...

n-1 1

The total number of comparisons is the sum of the first integers which is .
This is comparisons.

n n2 − n1
2

1
2

O(n2)

65 / 103

A bubble sort is often considered the most inefficient sorting method since it must
exchange items before the final location is known. These "wasted" exchange operations
are very costly.

66 / 103

A bubble sort is often considered the most inefficient sorting method since it must
exchange items before the final location is known. These "wasted" exchange operations
are very costly.

However, because the bubble sort makes passes through the entire unsorted portion of
the list, it has the capability to do something most sorting algorithms cannot. In particular,
if during a pass there are no exchanges, then we know that the list must be sorted!

66 / 103

A bubble sort is often considered the most inefficient sorting method since it must
exchange items before the final location is known. These "wasted" exchange operations
are very costly.

However, because the bubble sort makes passes through the entire unsorted portion of
the list, it has the capability to do something most sorting algorithms cannot. In particular,
if during a pass there are no exchanges, then we know that the list must be sorted!

In [19]: def bubble_sort_short(a_list):
 for i in range(len(a_list) - 1, 0, -1):
 exchanges = False
 for j in range(i):
 if a_list[j] > a_list[j + 1]:
 exchanges = True
 a_list[j], a_list[j + 1] = a_list[j + 1], a_list[j]
 if not exchanges:
 break

a_list = [20, 30, 40, 90, 50, 60, 70, 80, 100, 110]
bubble_sort_short(a_list)
print(a_list)

[20, 30, 40, 50, 60, 70, 80, 90, 100, 110]

66 / 103

5.8. The Selection Sort

67 / 103

The selection sort improves on the bubble sort by making only one exchange for every
pass through the list. Selection sort looks for the largest value as it makes a pass and,
after completing the pass, places it in the proper location.

68 / 103

The selection sort improves on the bubble sort by making only one exchange for every
pass through the list. Selection sort looks for the largest value as it makes a pass and,
after completing the pass, places it in the proper location.

As with a bubble sort, after the first pass, the largest item is in the correct place. After the
second pass, the next largest is in place. This process continues and requires passes
to sort items, since the final item must be in place after the pass.

n − 1
n n − 1

68 / 103

69 / 103

In [20]: def selection_sort(a_list):
 for i, item in enumerate(a_list):
 min_idx = len(a_list) - 1
 for j in range(i, len(a_list)):
 if a_list[j] < a_list[min_idx]:
 min_idx = j
 if min_idx != i:
 a_list[min_idx], a_list[i] = a_list[i], a_list[min_idx]

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
selection_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

70 / 103

In [20]: def selection_sort(a_list):
 for i, item in enumerate(a_list):
 min_idx = len(a_list) - 1
 for j in range(i, len(a_list)):
 if a_list[j] < a_list[min_idx]:
 min_idx = j
 if min_idx != i:
 a_list[min_idx], a_list[i] = a_list[i], a_list[min_idx]

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
selection_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

You may see that the selection sort makes the same number of comparisons as the
bubble sort and is therefore also . However, due to the reduction in the number of
exchanges, the selection sort typically executes faster in benchmark studies!

O(n2)

70 / 103

5.9 The Insertion Sort

71 / 103

The insertion sort, although still , works in a slightly different way. It always
maintains a sorted sublist in the lower positions of the list. Each new item is then
inserted back into the previous sublist such that the sorted sublist is one item larger.

O(n2)

72 / 103

The insertion sort, although still , works in a slightly different way. It always
maintains a sorted sublist in the lower positions of the list. Each new item is then
inserted back into the previous sublist such that the sorted sublist is one item larger.

O(n2)

72 / 103

We begin by assuming that a list with one item (position) is already sorted. On each
pass, one for each item 1 through , the current item is checked against those in the
already sorted sublist.

0
n − 1

73 / 103

We begin by assuming that a list with one item (position) is already sorted. On each
pass, one for each item 1 through , the current item is checked against those in the
already sorted sublist.

0
n − 1

As we look back into the already sorted sublist, we shift those items that are greater to
the right. When we reach a smaller item or the end of the sublist, the current item can be
inserted.

73 / 103

We begin by assuming that a list with one item (position) is already sorted. On each
pass, one for each item 1 through , the current item is checked against those in the
already sorted sublist.

0
n − 1

As we look back into the already sorted sublist, we shift those items that are greater to
the right. When we reach a smaller item or the end of the sublist, the current item can be
inserted.

73 / 103

The implementation of insertion_sort() shows that there are again passes to
sort items. The iteration starts at position 1 and moves through position , as these
are the items that need to be inserted back into the sorted sublists.

n − 1
n n − 1

74 / 103

The implementation of insertion_sort() shows that there are again passes to
sort items. The iteration starts at position 1 and moves through position , as these
are the items that need to be inserted back into the sorted sublists.

n − 1
n n − 1

In [21]: def insertion_sort(a_list):
 for i in range(1, len(a_list)):
 cur_val = a_list[i]
 cur_pos = i

 while cur_pos > 0 and a_list[cur_pos - 1] > cur_val:
 a_list[cur_pos] = a_list[cur_pos - 1]
 cur_pos = cur_pos - 1
 a_list[cur_pos] = cur_val

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insertion_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

74 / 103

The implementation of insertion_sort() shows that there are again passes to
sort items. The iteration starts at position 1 and moves through position , as these
are the items that need to be inserted back into the sorted sublists.

n − 1
n n − 1

In [21]: def insertion_sort(a_list):
 for i in range(1, len(a_list)):
 cur_val = a_list[i]
 cur_pos = i

 while cur_pos > 0 and a_list[cur_pos - 1] > cur_val:
 a_list[cur_pos] = a_list[cur_pos - 1]
 cur_pos = cur_pos - 1
 a_list[cur_pos] = cur_val

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
insertion_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

Line 7 performs the shift operation that moves a value up one position in the list, making
room behind it for the insertion.

74 / 103

The maximum number of comparisons for an insertion sort is the sum of the first
integers. Again, this is . However, in the best case, only one comparison needs to be
done on each pass. This would be the case for an already sorted list.

n − 1
O(n2)

75 / 103

The maximum number of comparisons for an insertion sort is the sum of the first
integers. Again, this is . However, in the best case, only one comparison needs to be
done on each pass. This would be the case for an already sorted list.

n − 1
O(n2)

One note about shifting versus exchanging is also important. In general, a shift
operation requires approximately a third of the processing work of an exchange
since only one assignment is performed. In benchmark studies, insertion sort will show
very good performance.

75 / 103

5.10. The Shell Sort

76 / 103

The Shell sort, sometimes called the diminishing increment sort, improves on the
insertion sort by breaking the original list into a number of smaller sublists, each of which
is sorted using an insertion sort.

77 / 103

The Shell sort, sometimes called the diminishing increment sort, improves on the
insertion sort by breaking the original list into a number of smaller sublists, each of which
is sorted using an insertion sort.

Instead of breaking the list into sublists of contiguous items, the Shell sort uses an
increment , sometimes called the gap, to create a sublist by choosing all items that are
items apart. If we use an increment of three, there are three sublists, each of which can be
sorted by an insertion sort.

i i

77 / 103

The Shell sort, sometimes called the diminishing increment sort, improves on the
insertion sort by breaking the original list into a number of smaller sublists, each of which
is sorted using an insertion sort.

Instead of breaking the list into sublists of contiguous items, the Shell sort uses an
increment , sometimes called the gap, to create a sublist by choosing all items that are
items apart. If we use an increment of three, there are three sublists, each of which can be
sorted by an insertion sort.

i i

77 / 103

After completing these sorts, we get:

78 / 103

After completing these sorts, we get:

By sorting the sublists, we have moved the items closer to where they actually belong. The
final insertion sort using an increment of one—in other words, a standard insertion sort.
Note that by performing the earlier sublist sorts, we have now reduced the total number
of shifting operations necessary to put the list in its final order.

78 / 103

For this case, we need only four more shifts to complete the process.

79 / 103

For this case, we need only four more shifts to complete the process.

The way in which the increments are chosen is the unique feature of the Shell sort.

79 / 103

In [22]: def shell_sort(a_list):
 sublist_count = len(a_list) // 2
 while sublist_count > 0:
 for pos_start in range(sublist_count):
 gap_insertion_sort(a_list, pos_start, sublist_count)
 print("After increments of size", sublist_count, "the list is", a_list
 sublist_count = sublist_count // 2

def gap_insertion_sort(a_list, start, gap):
 for i in range(start + gap, len(a_list), gap):
 cur_val = a_list[i]
 cur_pos = i
 while cur_pos >= gap and a_list[cur_pos - gap] > cur_val:
 a_list[cur_pos] = a_list[cur_pos - gap]
 cur_pos = cur_pos - gap
 a_list[cur_pos] = cur_val

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
shell_sort(a_list)
print(a_list)

After increments of size 4 the list is [20, 26, 44, 17, 54, 31, 93, 5
5, 77]
After increments of size 2 the list is [20, 17, 44, 26, 54, 31, 77, 5
5, 93]
After increments of size 1 the list is [17, 20, 26, 31, 44, 54, 55, 7
7, 93]
[17, 20, 26, 31, 44, 54, 55, 77, 93]

80 / 103

81 / 103

In this case, we begin with sublists. On the next pass, sublists are sorted. Eventually, a
single list is sorted with the basic insertion sort.

n
2

n
4

81 / 103

At first glance you may think that a Shell sort cannot be better than an insertion sort since
it does a complete insertion sort as the last step. It turns out, however, that this final
insertion sort does not need to do very many comparisons (or shifts) since the list has
been presorted by earlier incremental insertion sorts!

82 / 103

At first glance you may think that a Shell sort cannot be better than an insertion sort since
it does a complete insertion sort as the last step. It turns out, however, that this final
insertion sort does not need to do very many comparisons (or shifts) since the list has
been presorted by earlier incremental insertion sorts!

Although a general analysis of the Shell sort is well beyond the scope of this text, we can
say that it tends to fall somewhere between and . By changing the increment,
for example using (1, 3, 7, 15, 31, and so on), a Shell sort can perform at .

O(n2) O(n)

2k − 1 O(n)
3
2

82 / 103

5.11 The Merge Sort

83 / 103

We now turn our attention to using a divide and conquer strategy as a way to improve
the performance of sorting algorithms. The first algorithm we will study is the merge sort.

84 / 103

We now turn our attention to using a divide and conquer strategy as a way to improve
the performance of sorting algorithms. The first algorithm we will study is the merge sort.

Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty
or has one item, it is sorted by definition (the base case). If the list has more than one
item, we split the list and recursively invoke a merge sort on both halves.

84 / 103

We now turn our attention to using a divide and conquer strategy as a way to improve
the performance of sorting algorithms. The first algorithm we will study is the merge sort.

Merge sort is a recursive algorithm that continually splits a list in half. If the list is empty
or has one item, it is sorted by definition (the base case). If the list has more than one
item, we split the list and recursively invoke a merge sort on both halves.

84 / 103

Once the two halves are sorted, the fundamental operation, called a merge, is performed

85 / 103

Once the two halves are sorted, the fundamental operation, called a merge, is performed

Merging is the process of taking two smaller sorted lists and combining them together
into a single sorted new list.

85 / 103

Once the two halves are sorted, the fundamental operation, called a merge, is performed

Merging is the process of taking two smaller sorted lists and combining them together
into a single sorted new list.

85 / 103

In [23]: def merge_sort(a_list):
 print("Splitting", a_list)
 if len(a_list) > 1:
 mid = len(a_list) // 2
 left_half, right_half = a_list[:mid], a_list[mid:]

 merge_sort(left_half)
 merge_sort(right_half)

 i, j, k = 0, 0, 0
 while i < len(left_half) and j < len(right_half):
 if left_half[i] <= right_half[j]:
 a_list[k] = left_half[i]
 i = i + 1
 else:
 a_list[k] = right_half[j]
 j = j + 1
 k = k + 1
 while i < len(left_half):
 a_list[k] = left_half[i]
 i = i + 1
 k = k + 1

 while j < len(right_half):
 a_list[k] = right_half[j]
 j = j + 1
 k = k + 1
 print("Merging", a_list)

86 / 103

The code begins by asking the base case question. If the length of the list is less than or
equal to one, then we already have a sorted list and no more processing is necessary. If,
on the other hand, the length is greater than one, then we use the Python slice
operation to extract the left and right halves.

87 / 103

The code begins by asking the base case question. If the length of the list is less than or
equal to one, then we already have a sorted list and no more processing is necessary. If,
on the other hand, the length is greater than one, then we use the Python slice
operation to extract the left and right halves.

In [24]: a_list = [54, 26, 93, 17, 77]
merge_sort(a_list)
print(a_list)

Splitting [54, 26, 93, 17, 77]
Splitting [54, 26]
Splitting [54]
Merging [54]
Splitting [26]
Merging [26]
Merging [26, 54]
Splitting [93, 17, 77]
Splitting [93]
Merging [93]
Splitting [17, 77]
Splitting [17]
Merging [17]
Splitting [77]
Merging [77]
Merging [17, 77]
Merging [17, 77, 93]
Merging [17, 26, 54, 77, 93]
[17, 26, 54, 77, 93]

87 / 103

Once the merge_sort() function is invoked on the left half and the right half (lines 7–8),
it is assumed they are sorted. The rest of the function is responsible for merging the two
smaller sorted lists into a larger sorted list.

88 / 103

Once the merge_sort() function is invoked on the left half and the right half (lines 7–8),
it is assumed they are sorted. The rest of the function is responsible for merging the two
smaller sorted lists into a larger sorted list.

Notice that the merge operation places the items back into the original list (a_list) one
at a time by repeatedly taking the smallest item from the sorted lists. The condition in line
11 (left_half[i] <= right_half[j]) ensures that the algorithm is stable. A stable
algorithm maintains the order of duplicate items in a list and is preferred in most cases.

88 / 103

In order to analyze the merge_sort function, we need to consider the two distinct
processes that make up its mplementation. First, the list is split into halves. We already
computed (in a binary search) that we can divide a list in half times.logn

89 / 103

In order to analyze the merge_sort function, we need to consider the two distinct
processes that make up its mplementation. First, the list is split into halves. We already
computed (in a binary search) that we can divide a list in half times.logn

The second process is the merge. Each item in the list will eventually be processed and
placed on the sorted list. So the merge operation requires operations in each level.n

89 / 103

In order to analyze the merge_sort function, we need to consider the two distinct
processes that make up its mplementation. First, the list is split into halves. We already
computed (in a binary search) that we can divide a list in half times.logn

The second process is the merge. Each item in the list will eventually be processed and
placed on the sorted list. So the merge operation requires operations in each level.n

The result of this analysis is that splits, each of which costs for a total of
operations. A merge sort is an algorithm.

logn n n logn
O(n logn)

89 / 103

In order to analyze the merge_sort function, we need to consider the two distinct
processes that make up its mplementation. First, the list is split into halves. We already
computed (in a binary search) that we can divide a list in half times.logn

The second process is the merge. Each item in the list will eventually be processed and
placed on the sorted list. So the merge operation requires operations in each level.n

The result of this analysis is that splits, each of which costs for a total of
operations. A merge sort is an algorithm.

logn n n logn
O(n logn)

It is important to notice that the merge_sort() function requires extra space to hold the
two halves as they are extracted with the slicing operations. This additional space can be a
critical factor if the list is large and can make this sort problematic when working on large
data sets!

89 / 103

5.12. The Quicksort

90 / 103

The quicksort uses divide and conquer to gain the same advantages as the merge sort,
while not using additional storage. As a trade-off, however, it is possible that the list may
not be divided in half. When this happens, we will see that performance is diminished.

91 / 103

The quicksort uses divide and conquer to gain the same advantages as the merge sort,
while not using additional storage. As a trade-off, however, it is possible that the list may
not be divided in half. When this happens, we will see that performance is diminished.

A quicksort first selects a pivot value. Although there are many different ways to choose
the pivot value, we will simply use the first item in the list.

91 / 103

The quicksort uses divide and conquer to gain the same advantages as the merge sort,
while not using additional storage. As a trade-off, however, it is possible that the list may
not be divided in half. When this happens, we will see that performance is diminished.

A quicksort first selects a pivot value. Although there are many different ways to choose
the pivot value, we will simply use the first item in the list.

The role of the pivot value is to assist with splitting the list. The actual position where the
pivot value belongs in the final sorted list, commonly called the split point, will be used
to divide the list for subsequent calls to the quicksort.

91 / 103

In below, 54 will serve as our first pivot value

92 / 103

In below, 54 will serve as our first pivot value

The partition process will happen next. It will find the split point and at the same time
move other items to the appropriate side of the list, either less than or greater than the
pivot value.

92 / 103

In below, 54 will serve as our first pivot value

The partition process will happen next. It will find the split point and at the same time
move other items to the appropriate side of the list, either less than or greater than the
pivot value.

Partitioning begins by locating two position markers — let's call them left_mark and
right_mark — at the beginning and end of the remaining items in the list. The goal of
the partition process is to move items that are on the wrong side with respect to the pivot
value while also converging on the split point.

92 / 103

93 / 103

We begin by incrementing left_mark until we locate a value that is greater than the
pivot value. We then decrement right_mark until we find a value that is less than the
pivot value. At this point we have discovered two items that are out of place with respect
to the eventual split point. Now we can exchange these two items and then repeat the
process again.

94 / 103

We begin by incrementing left_mark until we locate a value that is greater than the
pivot value. We then decrement right_mark until we find a value that is less than the
pivot value. At this point we have discovered two items that are out of place with respect
to the eventual split point. Now we can exchange these two items and then repeat the
process again.

At the point where right_mark becomes less than left_mark , we stop. The position of
right_mark is now the split point! The pivot value can be exchanged with the contents
of the split point and the pivot value is now in place.

94 / 103

We begin by incrementing left_mark until we locate a value that is greater than the
pivot value. We then decrement right_mark until we find a value that is less than the
pivot value. At this point we have discovered two items that are out of place with respect
to the eventual split point. Now we can exchange these two items and then repeat the
process again.

At the point where right_mark becomes less than left_mark , we stop. The position of
right_mark is now the split point! The pivot value can be exchanged with the contents
of the split point and the pivot value is now in place.

In addition, all the items to the left of the split point are less than the pivot value, and all
the items to the right of the split point are greater than the pivot value. The list can now
be divided at the split point and the quicksort can be invoked recursively on the two
halves!

94 / 103

95 / 103

In [25]: def quick_sort(a_list):
 quick_sort_helper(a_list, 0, len(a_list) - 1)

def quick_sort_helper(a_list, first, last):
 if first < last:
 split = partition(a_list, first, last)
 quick_sort_helper(a_list, first, split - 1)
 quick_sort_helper(a_list, split + 1, last)

95 / 103

In [26]: def partition(a_list, first, last):
 pivot_val = a_list[first]
 left_mark = first + 1
 right_mark = last
 done = False

 while not done:
 while left_mark <= right_mark and a_list[left_mark] <= pivot_val:
 left_mark = left_mark + 1
 while left_mark <= right_mark and a_list[right_mark] >= pivot_val:
 right_mark = right_mark - 1
 if right_mark < left_mark:
 done = True
 else:
 a_list[left_mark], a_list[right_mark] = (
 a_list[right_mark],
 a_list[left_mark],
)
 a_list[first], a_list[right_mark] = a_list[right_mark], a_list[first]

 return right_mark

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
quick_sort(a_list)
print(a_list)

[17, 20, 26, 31, 44, 54, 55, 77, 93]

96 / 103

To analyze the quick_sort function, note that if the partition always occurs in the middle of
the list, there will again be divisions.O(logn)

97 / 103

To analyze the quick_sort function, note that if the partition always occurs in the middle of
the list, there will again be divisions.O(logn)

In order to find the split point, each of the items needs to be checked against the pivot
value. The result is . In addition, there is no need for additional memory as in the
merge sort process!

n

O(logn)

97 / 103

To analyze the quick_sort function, note that if the partition always occurs in the middle of
the list, there will again be divisions.O(logn)

In order to find the split point, each of the items needs to be checked against the pivot
value. The result is . In addition, there is no need for additional memory as in the
merge sort process!

n

O(logn)

Unfortunately, in the worst case, the split points may not be in the middle and can be very
skewed to the left or the right, leaving a very uneven division. In this case, it divides into
sorting a list of 0 items and a list of items. Then sorting a list of divides into a
list of size 0 and a list of size , and so on. The result is an sort with all of the
overhead that recursion requires.

n − 1 n − 1
n − 2 O(n2)

97 / 103

We mentioned earlier that there are different ways to choose the pivot value. In particular,
we can attempt to alleviate some of the potential for an uneven division by using a
technique called median of three.

98 / 103

We mentioned earlier that there are different ways to choose the pivot value. In particular,
we can attempt to alleviate some of the potential for an uneven division by using a
technique called median of three.

To choose the pivot value, we will consider the first, the middle, and the last element in
the list. In our example, those are 54, 77, and 20. Now pick the median value, in our case
54, and use it for the pivot value.

98 / 103

We mentioned earlier that there are different ways to choose the pivot value. In particular,
we can attempt to alleviate some of the potential for an uneven division by using a
technique called median of three.

To choose the pivot value, we will consider the first, the middle, and the last element in
the list. In our example, those are 54, 77, and 20. Now pick the median value, in our case
54, and use it for the pivot value.

The idea is that in the case where the first item in the list does not belong toward the
middle of the list, the median of three will choose a better “middle” value. This will be
particularly useful when the original list is somewhat sorted to begin with. We leave the
implementation of this pivot value selection as an exercise.

98 / 103

Exercise 3: Implement quick sort so that it supports sorting in descending order

99 / 103

Exercise 3: Implement quick sort so that it supports sorting in descending order

In [27]: def quick_sort(a_list, descending=False):
 quick_sort_helper(a_list, 0, len(a_list) - 1, descending)

def quick_sort_helper(a_list, first, last, descending):
 if first < last:
 split = partition(a_list, first, last, descending)
 quick_sort_helper(a_list, first, split - 1, descending)
 quick_sort_helper(a_list, split + 1, last, descending)

99 / 103

In [28]: def partition(a_list, first, last, descending):
 pivot_val = a_list[first]
 left_mark = first + 1
 right_mark = last
 done = False

 while not done:
 while left_mark <= right_mark and a_list[left_mark] <= pivot_val:
 left_mark = left_mark + 1
 while left_mark <= right_mark and a_list[right_mark] >= pivot_val:
 right_mark = right_mark - 1
 if right_mark < left_mark:
 done = True
 else:
 a_list[left_mark], a_list[right_mark] = (
 a_list[right_mark],
 a_list[left_mark],
)
 a_list[first], a_list[right_mark] = a_list[right_mark], a_list[first]

 return right_mark

100 / 103

In []: a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print("Original list:", a_list)
quick_sort(a_list, descending=False)
print("Sorted in ascending order:", a_list)
quick_sort(a_list, descending=True)
print("Sorted in descending order:", a_list)

101 / 103

References

102 / 103

1. Textbook CH5

103 / 103

	5.2 Searching
	5.3 The Sequential Search
	5.3.1 Analysis of Sequential Search

	5.4 The Binary Search
	5.4.1. Analysis of Binary Search

	5.5 Hashing
	5.5.1. Hash Functions
	5.5.2. Collision Resolution
	5.5.3. Implementing the Map Abstract Data Type
	5.5.4. Analysis of Hashing (Optional)

	5.6 Sorting
	5.7 The Bubble Sort
	5.8 The Selection Sort
	5.9 The Insertion Sort
	5.10 The Shell Sort
	5.11 The Merge Sort
	5.12 The Quicksort
	References

